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Abstract

Groups of displacement cascades calculated independently with different simulation models and computer codes are
compared on a statistical basis. The parameters used for this comparison are the number of Frenkel pairs (FP) produced,
the percentages of vacancies and self-interstitial atoms (SIAs) in clusters, the spatial extent and the aspect ratio of the
vacancies and the SIAs formed in each cascade. One group of cascades was generated in the binary collision approximation
(BCA) and all others by full molecular dynamics (MD). The MD results differ primarily due to the empirical interatomic
potentials used and, to some extent, in code strategies. Cascades were generated in simulation boxes at different initial equi-
librium temperatures. Only modest differences in the predicted numbers of FP are observed, but the other cascade param-
eters may differ by more than 100%. The consequences of these differences on long-term cluster growth in a radiation
environment are examined by means of object kinetic Monte Carlo (OKMC) simulations. These were repeated with three
different parameterizations of SIA and SIA cluster mobility. The differences encompassed low to high mobility, one- and
three-dimensional migration of clusters, and complete immobility of large clusters. The OKMC evolution was followed
until 0.1 dpa was reached. With the range of OKMC parameters used, cluster populations after 0.1 dpa differ by orders
of magnitude. Using the groups of cascades from different sources induced no difference larger than a factor of 2 in the
OKMC results. No correlation could be identified between the cascade parameters considered and the number densities
of vacancies and SIAs predicted by OKMC to cluster in the long term. However, use of random point defect distributions
instead of those obtained for displacement cascades as input for the OKMC modeling led to significantly different results.
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It is therefore suggested that although the displacement cascade characteristics considered do not correlate with cluster
populations in the long term, other aspects of the internal structure of cascades do.
� 2006 Elsevier B.V. All rights reserved.

PACS: 61.80.Az; 61.82.Bg; 61.80.Hg; 34.20.Cf
1. Introduction

The evolution of damage in a radiation environ-
ment spans several spatial and time scales and it
is a substantial challenge to predict the long-term
mechanical property changes in materials induced
by radiation. For this purpose, one approach con-
sists of chaining together existing models at different
scales covering phenomena that range from the
recoiling of atoms induced by irradiating particles
to the macroscopic defective state of the material
[1]. At the atomic scale, collision cascade generation
by primary recoils in metals, the subsequent partial
recovery and the evolution toward the resulting
point defect distributions can be naturally simulated
by molecular dynamics (MD). In metals, and thus in
iron on which the present report focuses, point
defects in displacement cascades are inhomo-
geneously distributed and may spontaneously form
small clusters. They evolve over long times for
which MD modeling turns out to be impractical.
To overcome this limitation, MD may be chained
with a kinetic Monte Carlo (KMC) simulation that
describes the thermal evolution of point defects and
point defect clusters up to the mesoscopic scale.
Since cluster thermal mobility and diffusion mecha-
nisms depend on their size and type, different
diffusion models need to be applied to each of them.
The object KMC (OKMC) method allows different
diffusion properties to be attributed to different
objects and is therefore suitable for this type of
study.

Both MD and OKMC models are constructed on
the basis of strategies for limiting the necessary com-
putational effort and of parameters subtending the
models. For these reasons, predictions are to some
extent approximate. One thus has to face the double
problem of estimating both the degree of approxima-
tion inherent to one scale (here the atomic scale) and
the propagation of approximations when moving to
larger scales (here the mesoscopic scale). A way to
tackle this problem is to compare predictions from
different models and computational strategies and
to measure directly the consequences of their differ-
ences at the next scale. The purpose of the collective
exercise presented in this report is to estimate the
magnitude of differences in predictions made at the
atomic scale by independent MD approaches, and
to measure their consequences for the results of
OKMC predictions at the mesoscale while using dif-
ferent parameterizations of the OKMC model. The
complete MD simulation of displacement cascades
is computationally demanding, and a number of
cascades must be completed at any one energy/tem-
perature condition to permit a valid statistical com-
parison of different potentials and MD models.
During more than a decade, the authors of this report
produced studies and reviews of various aspects of
damage production in iron at the atomic scale using
different codes and models and, more recently, up
to the mesoscopic scale using OKMC [2–38]. In this
report, the results of the simulations performed inde-
pendently over the last decade are used to estimate
the magnitude of differences in atomic scale predic-
tions on a statistical basis and the consequences on
the long-term defect cluster growth using different
parameterizations of the OKMC.

The paper is organized as follows. Section 2
describes the methodology used for the atomic scale
and OKMC damage predictions. Models and code
strategies used are summarized in Section 3 (more
complete detail is available in the literature). Section
4 describes the cascade analysis methods. Section 5
provides a comparison of cascade results gathered
by the different participating groups and Section 6
examines the possible consequences of primary
damage on the longer term evolution in a radiation
environment by means of OKMC with three differ-
ent sets of parameters describing SIA defect mobil-
ity. The results are discussed in Section 7.

2. Methodology

2.1. Displacement cascades

The displacement cascades used were produced in
models of alpha-iron with four different codes. The
first three are full MD codes that were developed



Table 1
Numbers of cascades used as generated with each code

5 keV 10 keV 20 keV

100 K 600 K 100 K 600 K 100 K 600 K

LVP
(AMS [59])

30 36 30 30 10 20

MLD
(FS [60])

9 15 10 8

DMK
(SP [61])

5 5 4

DMK
(ABC [62])

10

DMK
(AMS)

10

DMK
(CWP [63])

10

DMK
(WOL [64])

10

BCA
(ZBL [65])

1000 1000 1000 999 1000 1000

The potentials are given in parenthesis. Cascades are regrouped
according to the primary recoil energy and the initial temperature
of the simulation boxes.

A. Souidi et al. / Journal of Nuclear Materials 355 (2006) 89–103 91
independently. MOLDY [39] (labeled ‘MLD’ in
what follows) was used for modeling cascades gener-
ated by primary recoil atoms with kinetic energies in
the range of 0.1–200 keV; DYMOKA [15] (labeled
‘DMK’ in what follows) was used for cascades in
the 5–30 keV range; and LIVCAS [16] (labeled
‘LVP’ in what follows) was used for cascades in the
1–25 keV range. The fourth code, MARLOWE
[40], uses the binary collision approximation of
MD, to permit fast computation of collision
cascades and was implemented by an approximate
treatment of short-term point defect recombination
in order to bridge the collisional (ballistic) phase to
the displacement cascade [24]. It is labeled ‘BCA’
in what follows. In order to present the largest pos-
sible comparison, given the results available, 5, 10
and 20 keV cascades are analyzed here. We consider
the mean numbers of point defects and the mean
fractions of clustered vacancies and SIAs produced
per cascade. Longer-range correlations are esti-
mated and compared by means of pair distance
correlation functions and mean spatial cascade
extensions and aspect ratios are also estimated and
compared. In order to avoid the risk of different
results originating from different definitions and
analysis protocols, the same analysis algorithms
are used for all sets of cascades computed by each
participating research team.

2.2. The long term point defect cluster growth

To our knowledge, there are only a few OKMC
codes presently available, the most popular being
BigMac [41,42] and LAKIMOCA [31]. We use the
latter. Quantitative OKMC predictions are depen-
dent on the parameters used for describing the
mobility of point defects and their clusters [38,43].
Different sets of parameters were discussed in [31]
and this discussion is not repeated here. Instead,
the different sets of displacement cascades available
are used as OKMC input and the OKMC results
compared at given OKMC conditions. Repeating
the OKMC simulations with the three parameters
sets described below allows differentiation of the
contribution of the primary damage and the OKMC
models to any variability in the OKMC results.
Defect data for cascades generated in model simula-
tion boxes initially set at two different temperatures
100 K and 600 K are employed so that, by using one
constant temperature in the OKMC simulations,
the effect of cascade temperature on the long-term
defect cluster populations can be determined.
3. The displacement cascades and the OKMC

models

3.1. The displacement cascades

The sets of cascades analyzed and used for long
term predictions are given in Table 1, in terms of
simulated energies and temperatures, as well as
codes and potentials used. As a whole, it represents
262 full MD cascades and 6000 BCA cascades. The
properties of the different interatomic potentials
used [59–65] have been partially reviewed in the lit-
erature [15,37,44], and compared with experimental
and ab initio results [46–58]. Among these poten-
tials, produced over the last 20 years, the one
recently derived by Ackland and co-workers [59],
here denoted as AMS, is currently considered to
be the most accurate of all, since it was fitted to
reproduce the formation energy of SIA configura-
tions as obtained by ab initio calculations [45] and
verified to provide migration energies in accordance
with both experimental and ab initio results [68].

The full MD simulations are characterized by

(1) The equilibrium interatomic potentials. Six
different equilibrium potentials were em-
ployed in the full MD simulations, and are
discussed in the references cited.

(2) The short range pair potential branches. For
close encounters between atoms, the repulsive
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pair component of each equilibrium potential
is joined to the screened Coulomb potential
in [65] by means of a cubic spline. The spline
nodes differ from one potential to the other.
The potential in [65] is also employed in the
BCA simulations.

(3) The simulation box sizes. The MD simulation
boxes are all cubic in shape, but the sizes used
differ from one set of simulations to another.
LVP simulation box sizes range from 50 to
100a0 (250000 to two million atoms) for cas-
cades from 5 to 20 keV, where a0 is the lattice
parameter. MLD box sizes range from 30 to
60a0 (54000 to 432000 atoms) in the same
energy range. The box sizes employed for
generating DMK cascades ranged from 50
to 80a0 (250000–1 024000 atoms).

(4) The boundary conditions. Periodic boundary
conditions are used in three codes. LVP and
DMK simulations were carried out at con-
stant volume, while in MLD the boundaries
of the simulation are maintained at constant
(zero) pressure [60]. In all three cases the sim-
ulation boxes are thermally isolated, leading
to an increase of the temperature due to the
kinetic energy of the primary knock on atom.
This increase depends on the box size and
may be estimated as of the order of DT ¼bE=3NkB where bE is the part of the cascade
energy which is not spent in the production
of permanent defects, kB the Boltzman con-
stant and N the number of atoms in the box.

(5) The time step and the duration of the cascade

evolution. For the DMK cascades, the simula-
tion was broken into a number of time seg-
ments and a constant time step was used in
the integration of the equations of motion
during each segment. The duration of the var-
ious segments was determined by the kinetic
energies of the moving atoms and the time
step in each segment was adjusted accord-
ingly. The MLD and LVP cascades were gen-
erated using a multiple time step that adjusted
automatically according to the kinetic energy
of moving particles so as to limit either the
maximum energy change or the maximum
atom movement during a timestep [16,39].
The LVP code further optimized performance
by using effectively longer timesteps in
regions of the box where the kinetic energy
of the atoms was undisturbed by the cascade
event. The cascade event was considered to be
over when all of the initial kinetic energy of
the primary recoil was thoroughly dissipated
and atom motion was controlled by simple
thermal oscillations.

In the BCA method, the equations of motion are
not integrated stepwise in time. The MARLOWE
code offers several options for modeling collision
cascades and, in brief, the model selected here
is as follows. Collision cascades are modeled as
sequences of binary encounters between a projectile
and a target atom at rest. The latter can either be a
lattice atom or an already-stopped recoil. Multiple
interactions are only treated approximately, impos-
ing momentum conservation and subsequent rescal-
ing of the velocities. Between collisions, atoms are
considered to follow their asymptotic path. The
position of the asymptotes as well as the elastic
energy transfers are deduced from the scattering
integrals, namely, the scattering angle in the centre
of mass system and the time integral, according to
[40]. For consistency with the full MD cascades
described above, the ZBL interaction potential is
chosen. A clock is assigned to each moving particle
and is incremented at each collision with the colli-
sion time deduced from the time integral. Moving
atoms are ordered into time-slabs and those in the
earliest slab are selected for the next collision until
this slab is empty, and so on. Except in the case of
replacement collisions to which a specific treatment
is applied (see [25,26,36] for a discussion in the case
of iron), target atoms are assumed bound to their
lattice sites with an energy equal to the cohesive
energy of iron. Such recoils are then identified as
cascade atoms if their kinetic energy at the exit of
their collisions is higher than a threshold value. A
trajectory calculation is stopped when the kinetic
energy of a moving atom falls below a cut-off value,
here chosen equal to the displacement energy
threshold which is close to the cohesive energy of
iron. This threshold is a calculational parameter
which has no relation with the threshold energy
for producing a stable Frenkel pair. In the present
model, non-replacing atoms stopped at the cut-off
energy are considered as nascent interstitials, candi-
dates for the formation of Frenkel pairs. In order to
determine stable Frenkel pairs, each nascent inter-
stitial is paired to its closest vacancy. The defects
are only retained as a Frenkel pair if their separa-
tion is larger than a specified recombination dis-
tance which is used as a parameter. In the results
presented below, this parameter is adjusted in such
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a way that the number of Frenkel pairs produced in
10 keV cascades is the same as predicted by full MD
with the DMK (SP) (see Table 1).

3.2. The OKMC models

The method and the models available in the
LAKIMOCA code are described in detail elsewhere
[31]. Briefly, defects are treated as objects with spe-
cific positions in a simulation volume. Probabilities
for physical transition mechanisms are calculated
based on Boltzmann factor frequencies. After a cer-
tain event is chosen, time is increased according to a
residence time algorithm [66]. The basic aspects of
the parameterization used are described in [31].
The three parameter sets used here differ from each
other in the treatment of SIA and SIA cluster mobil-
ities. In set I, all SIA clusters (size m P 2) migrate in
1D, with a migration energy Em = 0.04 eV and a
prefactor decreasing with size according to the
law: m0 Æ m�s (m0 = 6 · 1012 s�1, s = 0.51, following
Ref. [67]). In set II, small clusters (m < 5) migrate
in 3D with Em = 0.4 eV, as suggested by recent
ab initio calculations [68], while larger clusters
maintain 1D motion with Em = 0.04 eV. For large
clusters the prefactor decreases with s = 0.51 and
for small ones it decreases with s = 10. Finally, set
III treats small clusters (m < 5) in the same way as
set II, but assumes that larger clusters are com-
pletely immobile (see Table 2). For vacancy clusters,
the same mobility was used in all three sets: a migra-
tion energy of 0.65 eV and a prefactor decreasing
with size according to the law m0p�(m�2) for m P 2
with p = 100 and m0 = 6 · 1012. These sets are sum-
marized in Table 2.

A damage rate of 10�6 dpa/s was simulated in the
OKMC by injecting displacement cascades selected
at random from the chosen cascade group until
0.1 dpa was reached, according to the so-called
NRT relation [69]. This damage rate is typical of
high-flux reactor operating conditions. The simula-
Table 2
Summary of parameter sets for the description of SIA cluster
mobility

SIA
cluster size

Set I Set II Set III

(Em, eV) s Em D s Em D s Em D

m = 1 – 0.3 3D – 0.3 3D – 0.3 3D
2 < m < 5 0.51 0.04 1D 10 0.4 3D 10 0.4 3D
m P 5 0.51 0.04 1D 0.51 0.04 1D Immobile
tions were performed in a 200a0 · 200a0 · 200a0

volume, using periodic boundary conditions and a
grain size of approximately 2 lm. The irradiation
temperature was 340 K. With all sets, 100 ppm traps
for single SIAs and SIA clusters (binding energy
0.65 eV, capture radius 0.5 nm) were included. This
was necessary because of the generally high mobility
of SIA clusters in sets I and II; they can only accu-
mulate in the material if traps exist. These traps can
be interpreted as the effect of impurities, such as C
or N atoms, or even substitutional atoms, which
are known to affect point defect motion due to their
binding energy with SIA and vacancies. However, in
the present model, impurity atoms do not appear
explicitly; rather, generic, immobile traps that act
on SIAs are included. No traps for single vacancies
or vacancy clusters were included. This choice, as
well as the choice of trap density, binding energy
and capture radius was made because it has been
demonstrated [31] that this simple parameter set
was sufficient to reproduce the density of vacancy
clusters (of any size) at different doses after neutron
irradiation observed in the experiment of Eldrup
and co-workers [70].

4. Cascades analysis methods

4.1. Detecting Frenkel pairs

In the BCA, a Frenkel pair is easily identified as a
displaced atom which escaped recombination and
the closest vacant lattice site. Its detection is thus
straightforward. The situation is a little more
ambiguous in MD cascades where lattice distortions
are possible as well as local rearrangements involv-
ing several atoms, such as dumbbell interstitials,
crowdions, dislocation loops, etc. Two approaches
are currently used for detecting interstitials and
vacancies in MD cascades, both of which are based
on the occupancy of a given volume centred on a
lattice site. In one case this volume is a Wigner–Seitz
cell and in the other a spherical volume of specified
radius (currently 0.3a0 in iron). Both methods have
been applied in the previously published work on
the displacement cascades listed in Table 1.

If either the Wigner–Seitz cell or the spherical
volume is empty, the lattice site is considered to be
a vacancy. If it contains two atoms, one interstitial
is counted. The latter can be described as a dumb-
bell interstitial. Since the spheres do not fill all
space, atoms that do not fall within one of the
spheres are also interstitials. In order to compare
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these methods, we estimated the number of Frenkel
pairs using both for the LVP cascades. The results
were close to identical confirming that, in the case
of displacement cascades in iron, both methods
are consistent with each other.

For simplicity, in the analysis of spatial point
defect correlations that follows, the distinction
between different types of interstitials (simple octa-
hedral, dumbbells, crowdions) is ignored and all
are simply designated as interstitials.

4.2. Estimating cluster populations

Point defect clusters occur when groups of point
defects are formed within a small volume. Clusters
are thus identified as groups of point defects having
at least one other point defect within a distance
shorter than some threshold value. This threshold
distance is a parameter, here chosen as the second
neighbor distance in iron. The resulting vacancy
and interstitial clusters are then counted, as well as
the percentages of vacancies and interstitials in clus-
ters. Lists of clusters and of their positions are
retained as input for OKMC simulations. In some
cases, complexes that involve both vacancy lattice
sites and interstitials are found. The difference
between the number of SIA and vacancies deter-
mines cluster size and type in these cases.

The detection of clusters may differ slightly from
one algorithm to another, depending on the treat-
ment of dumbbells and crowdions in which no point
defect location can be unambiguously assigned. For
example, a dumbbell interstitial appears as two
atoms nearly equidistant from a vacant lattice site.
In the case of a dumbbell, it has been assumed that
one atom in the pair, the closest to the shared
vacancy, occupies it and the other is identified as a
SIA. In the case of a crowdion (typically three
atoms sharing two lattice sites), the interstitial loca-
tion depends on the recombination sequence in the
clustering algorithm. This may have minor conse-
quences on cluster distributions, pair distance corre-
lations and spatial distributions of point defects.
The consequences on clustering were measured in
the LVP and MLD cascades by using two different
approaches with a second-neighbor criterion. In
the first, the SIA is set at the centre of mass of the
crowdion, while in the second the most distant atom
from the shared vacancies is left as a SIA. It was
found that this may lead to about a 10% divergence
in some bins of the cluster size distributions (with a
bin width of one point defect).
A second-neighbor criterion is here used for con-
venience. However, it has been suggested in [44] that
it is not necessarily the most reliable one as far as
SIAs are concerned. In that work, clustering algo-
rithms were compared using either a third-neighbor
criterion or by direct visualization of cluster motion
during the animation of MD cascade evolution. A
third-neighbor criterion was found to provide better
agreement with the results based on visualization
than the second-nearest neighbor. However, the
cluster populations still differed from that deter-
mined by a visual approach when oscillations in
crowdion configurations had to be accounted for.

4.3. Estimating pair separation distances

The most standard function for characterizing
spatial correlations between atoms in infinite media
is the pair correlation function, g(r) (see e.g. [71])
where r is the vector pair distance. Given the small
size of cascades and their irregular shapes, and dis-
regarding angular correlations in the orientation of
Frenkel pairs, it is convenient to use a pair distance
correlation function (pdf) defined as

GðrÞ ¼ 1

NðN � 1Þ
XN

i¼1

XN

j>i

dðr � rijÞ

where GðrÞ ¼ 4pr2

X
gðrÞ ð1Þ

and X is the volume. In a structure-less infinite
homogeneous medium, G(r) increases with r2 while
g(r) is unity. G(r) is normalized in such a way that

IGðRÞ ¼
Z R

0

GðrÞdr ð2Þ

is unity when R P rmax
ij , the largest separation

distance between point defects in a cascade. The
integral (2) will be used here to analyze pair separa-
tion distances between point defects in cascades
over all distances within the simulations box.
4.4. Estimating spatial extents

Component analysis permits an ellipsoid to be
associated with each individual displacement cas-
cade, accounting for its spatial extension and its
morphology on the basis of its intrinsic characteris-
tics [72]. The information provided by this method
is the direction of three orthogonal axes that are
associated with the spatial point defect distribution
and the variance of this distribution projected onto
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them. The major axis has the direction maximizing
the variance, a2, while the second maximizes the
variance b2 of the distribution projected onto a
plane perpendicular to the first and the third has
the direction minimizing this variance, c2. These
directions are parallel to the directions of the eigen-
vectors of the covariance matrix of the point defect
distributions and the associated eigenvalues are the
variances of the distribution projected onto the
directions of the eigenvectors. The eigenvectors
and eigenvalues naturally define the ellipsoid associ-
ated with each cloud of point defects, with axis
lengths given by the standard deviation of the distri-
butions projected in the directions of the eigenvec-
tors. Such ellipsoids can be associated distinctly
with sets of vacancies and of interstitials in each
cascade, characterized by their volume and by an
aspect ratio. The latter is here defined by

k ¼ a
c
� 1 ð3Þ

and measures the offset from spherical symmetry.
5. Comparison after short term evolution

5.1. Cascades computed with the same code and

different potentials

In [44], a comparison was already presented
between sets of cascades generated using the DYM-
OKA code with four different potentials referred
above as AMS, ABC, CWP and WOL. The
approach has the advantage that cascades are calcu-
lated with exactly the same simulation strategy and
that cascade properties are evaluated using the same
methods and algorithms. Cascades were compared
from 5 to 40 keV energy, using each potential, and
Table 3
Mean numbers of Frenkel pairs, percentages of vacancies and intersti
temperature, with standard errors on the mean

Cascades 20 keV Number
of cascades

hmFPi sem %
i

DMK (ABC) 10 48.7 2.071 1
DMK (CWP) 10 52.7 1.915 2
DMK (WOL) 10 50.1 2.562 4
DMK (AMS) 10 48.2 2.894 5
d 9* 9

DMK stands for cascades generated with DYMOKA. In the last row,
mean numbers of Frenkel pairs, percentages of vacancies and o
d = 200{max(x) � min(x)}/{max(x) + min(x)}. An asterisk is displayed
differences in the evolution and in the final point
defect configurations were analyzed. The full analy-
sis will not be repeated here and the reader may
refer to [44] for the details.

Only the final MD configurations of the 20 keV
cascades from that work, generated in boxes of
50a0 size are reanalyzed here, for consistency with
the approach used also for analyzing cascades from
other sources. Table 3 provides the mean numbers
of Frenkel pairs obtained and percentages of vacan-
cies and SIA in clusters, with the associated stan-
dard errors on the mean (sem). The standard
deviations of associated frequency distributions
can be directly deduced from the sem and the num-
ber of cascades given in the same Table 3.

As already noticed in [44], and consistently with
the early ballistic theories based on energy partition
[73–75], the mean number of Frenkel pairs is not
significantly potential-dependent and its frequency
distribution around the mean is rather narrow (stan-
dard deviation of 10–20% of the mean). These dis-
tributions are known in the case of BCA cascades
to be close to symmetrical [76] and narrow as well.
In contrast, percentages of vacancies and intersti-
tials in clusters display a much larger variability
with d � 100 and d � 50 respectively. The reasons
for this variation are difficult to determine because
of the various competing processes involved. Clus-
ters are formed directly during the ballistic phase
of the cascades and, as found in [24,44], they may
anneal or fragment, or grow further during the cool-
ing phase. The fraction of ballistically-clustered
point defects as well as the length of the cooling
phase is strongly potential-dependent. The thermal
diffusion that follows is also potential-dependent
and may give rise to additional SIA clustering.

Clustered vacancy and SIA fractions obtained
with the various potentials and models are shown
tials in clusters in a simulation box at initial 100 K equilibrium

Vacancy
n clusters

sem % Interstitials
in clusters

sem

7.7 1.6 33.1 1.8
9 4.5 23.7 4.9
1.4 4.2 42.0 3.9
0.1 2.5 37.7 3.1
5 55

d measures the largest relative difference (in percent) between the
f interstitials in clusters. It is defined for a quantity x by

when this difference is not significant with regard to the sem.
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Fig. 1. Comparison of the size distributions of percentages of (a) vacancies and (b) interstitials in clusters calculated with DMK with
different potentials, with LVP and the AMS potential, with MLD and the FS potential and with BCA and the ZBL potential. The size
distributions obtained in random point defects distributions (RND) are shown for comparison. The cascade energy is 20 keV and the
initial equilibrium temperature is 100 K.
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in Fig. 1. The consequence of the models will be dis-
cussed in the next section. Here, we focus on the role
of potentials, namely ABC, CVP, WOL and AMS.
Consistent with the small standard deviations
deduced from Table 3, the corresponding distribu-
tions are sharply peaked at the size of mono-vacan-
cies and mono-interstitials. However, they display
tails toward large cluster sizes with lengths partially
correlating with a decrease of mono-defect frequen-
cies. The samples are too small to allow for statisti-
cal analysis of the skewness of the distributions in
Fig. 1. However, the results in this figure are quali-
tatively consistent with skewness being sensitive to
the potential. Whether this may correlate with the
long-term evolution of point defect clusters is exam-
ined in Section 6.

Spatial extent data are summarized in Table 4.
Distributions of volumes associated with vacancies
as well as with interstitials are known to be quite
Table 4
Mean volumes of vacancy and interstitial ellipsoids, aspect ratios of va
initial temperature, with standard errors on the mean

Cascades 20 keV hXVACi sem hXINTi s

DMK (ABC) 1024 168 4010 5
DMK (CWP) 1620 508 5142 6
DMK (WOL) 621 166 4396 7
DMK (AMS) 460 108 4257 6
d 111 25*

In the last row, d is defined as in Table 3 and only accounts for DMK
broad, with the consequence of large sem values
and thus of large standard deviations (from 50%
to 100% of the mean). On top of this dispersion,
vacancy volumes are significantly potential-depen-
dent with d above 100. SIA volumes are not as
sensitive to the potential. A d-value of 25 is found,
which, despite its magnitude, is not statistically sig-
nificant according to the criterion employed. Again,
a straightforward relation between the potential
characteristics and the spatial extent of vacancies
is difficult to determine and the analysis of this
problem is beyond the scope of the present report.
The aspect ratios of the interstitial component of
cascades for the different potentials are not statisti-
cally different. Hence, the model potential affects the
cascade volume, and thus the point defect density,
and the mean cascade elongations as well. Intersti-
tial distributions are less elongated than vacancy
distributions.
cancy and interstitial distributions in a simulation box at 100 K

em kVAC sem kINT sem

32 2.41 0.1 1.05 0.10
98 2.97 0.7 0.89 0.14
87 4.01 1.0 0.95 0.145
55 4.01 0.97 0.845 0.09

50 22*

results.
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5.2. Cascades with different potentials and codes

We now proceed to a comparison of sets of cas-
cades calculated by different research groups using
different codes and potentials. In this comparison,
variability resulting from simulation strategies and
from potentials cannot be distinguished.

In addition to full MD codes, the BCA MAR-
LOWE code is also employed. A vacancy–intersti-
tial recombination radius of 3.5a0 was determined
to be necessary in order to match the predicted
mean number of FP to the value obtained with
DMK (SP) for 10 keV cascades at 600 K. The perti-
nence of this approach is discussed elsewhere [24].
Random uniform point defect distributions (RND)
were also constructed. They will serve as a reference
for examining the magnitude and the consequence
of the internal structure of cascades in the long
term. For building these distributions, coordinates
of point defects were selected at random in ellip-
soids such that the projected variances were equal
to the mean projected variances of DMK cascades
obtained with the ABC potential and generated in
a box with 100 K initial temperature. The numbers
of point defects of each kind were also adjusted
on the same basis. Frenkel pairs and point defect
cluster results are collected in Table 5 for 20 keV
cascades, but the following discussion also applies
to 5 and 10 keV cascades.

A decrease in the number of FP produced with
increasing temperature is predicted by LVP, BCA,
and MLD, although the differences in MLD results
are at the limit of statistical significance. This
decrease is not clearly energy dependent but its mag-
Table 5
Numbers of Frenkel pairs and percentages of point defects in clusters

Cascades 20 keV No. of cascades hmFPi sem %

LVP 100 K 10 46.5 3.4 3
LVP 600 K 20 38 1.8 4
DMK 600 K 4 41 3 3
MLD 100 K 10 60.2 2.8 2
MLD 600 K 8 55.75 2.1 2
BCA 100 K 1000 61.075 0.16 6
BCA 600 K 1000 51.17 0.13 5
RND 10 46.8 2.1 1
dT(LVP) 20 3
dT(MLD) 7.8* 2
dT(BCA) 17.6 9
dC(LVP–MLD) 26(100 K) 2

38(600 K) 7

d-Values are given for differences obtained with different initial temper
differences between LVP and MLD cascades with 100 K initial temper
nitude depends on the model. The fact that the
d-value obtained in the BCA is similar to that
obtained by MD suggests that the effect of temper-
ature, if any, occurs in the ballistic phase. This is
consistent with a decrease of the length of replace-
ment sequences with increasing temperature.

The comparison between LVP and MLD num-
bers of FP shows that differences in MD models
induce differences at least equal to temperature
effects. In the previous section, mean numbers of
FP were found to vary less than 20% when changing
the potential in the same code. The differences
found in Table 5 may thus have part of their origin
in the different simulation strategies adopted using
the different codes.

The comparison with RND results clearly dem-
onstrates that in both BCA and MD cascades, the
clustering of vacancies and of interstitials after
recombination is far from random. A comparison
between BCA and MD results shows SIA clustering
to be dominated by the post-ballistic evolution.
How nascent vacancies and interstitials evolve after
the ballistic phase is not known exactly and is
probably potential-dependent too. The high recoil
density [77] in the cascade local heat transport and
the transient stress gradients at the interface
between the cascade and its unperturbed surround-
ing may combine to enhance or decrease the point
defect mobility and clustering. The population of
vacancies in clusters follows from a balance between
ballistic clustering and cluster dissolution during the
cooling phase. Interstitials carried outward from
the cascade core may cluster during either phase.
The significant increase of the percentage of
V in clusters sem % I in clusters sem

1.9 4.6 37.5 4.6
4.8 3.1 57.5 2.8
0.5 7.25 8.9 1.5
5.6 2.1 55.3 2.4
0.6 2.8 74 2.8
0 0.27 1.85 0.08
5 0.29 1.89 0.08
.6 0.8 0.4 0.4
3 42
1.6 29

2*

2(100 K) 38(100 K)

4(600 K) 25(600 K)

atures (dT) in LVP, MLD and BCA cascades. It is also given for
ature (dC).
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vacancies in clusters with temperature in LVP cas-
cades is not observed by MLD or BCA, leading to
a higher divergence between LVP and MLD at the
higher temperature (74%).

Although higher than predicted in the BCA, the
percentage of SIA in clusters in DMK (SP) cascades
is strikingly lower than in LVP and MLD, while the
number of FPs and percentage clustered vacancies
are intermediate. We found this difference to be spe-
cific to the clustering analysis method. In Table 5, a
second-nearest neighbor (2nn) criterion is used.
Using a 3nn criterion, it is found that the fraction
of vacancies in clusters only increases by a few per-
cent with all potentials considered. Second-neighbor
vacancies are indeed stable configurations. In con-
trast, configurations of second-neighbor interstitials
are predicted to be unstable with the SP potential
and 3nn configurations are highly preferred. As a
consequence, 3nn clustering leads to much higher
fractions of interstitials in clusters, namely 42%,
and remains almost unchanged when a 4nn cluster-
ing criterion is used. With the SP potential used in
DMK, a 2nn criterion may thus appear too restric-
tive for properly describing the clustering of intersti-
tials. Such sensitivity was not found in the other
cascade data sets.

Spatial extent data are summarized in Table 6 for
20 keV cascades but the discussion below also
applies to 5 and 10 keV results. As in Section 5.1,
the most striking feature is the difference found in
cascade volumes with different codes. Since the
magnitude of this difference is similar as well, it
may be assigned principally to the different poten-
tials used. The standard deviations of MLD cascade
volume distributions is also found strikingly higher
than others. The effect of the initial temperature is
Table 6
Mean vacancy and interstitial volumes, aspect ratios of vacancy and in

Cascades 20 keV hXVACi sem hXINTi sem

LVP 100 K 495 139 3100 32
LVP 600 K 542 94 1927 23
DMK 600 K 1405 299 3915 37
MLD 100 K 1835 390 5337 84
MLD 600 K 1986 536 5562 93
BCA 100 K 729 25.5 2626 4
BCA 600 K 825 21.1 2526 4
dT(LVP) 9* 46
dT(MLD) 8* 4*

dT(BCA) 12 4
dC(LVP–MLD) 115(100 K) 53(100 K)

114(600 K) 97(600 K)
unclear. It is not significant on the vacancy volume
distributions – although a trend to increase with
temperature is systematic – while mean interstitial
volumes are predicted to decrease with increasing
temperature in LVP, which is not contradicted by
MLD nor by BCA. As in the previous section, all
models predict vacancy volumes to have higher
aspect ratios than interstitial volumes.

The point defect separation distances may corre-
late at distances longer than the strict 2nn, 3nn or
4nn criterion used to define clusters. Pair distance
distribution functions (pdf) reveal information
about the longer-range correlations between point
defects. Fig. 2 shows the pdf for vacancy–vacancy
(V–V), vacancy–interstitial (V–I) and interstitial–
interstitial (I–I) pairs obtained for different sets of
simulations of 20 keV cascades and for random
point defect distributions. The range considered is
over 40a0, which is close to the largest cascade size
considered here. The pdf are seen to be influenced
by the interatomic potential, the initial temperature
and the cascade model well beyond the few first
neighbor distances and the magnitude of the effect
can be evaluated by comparing with the pdf mea-
sured in random point defect distributions. Every
cascade model is characterized by pdf different from
random, displaying pairs in excess at short distances
(though larger than 2nn), while long-range correla-
tions are never favored. This indicates an aggrega-
tion of point defects, which is more pronounced
for homogeneous pairs (Fig. 2(a) and (c)) than het-
erogeneous pairs (Fig. 2(b)) and strongest within the
shortest range for I–I pairs. The difference between
homogeneous and heterogeneous pairs is not
surprising. Close vacancy–interstitial pairs are likely
to annihilate. At the same time, the vacancy and
terstitial distributions

kVAC sem kINT sem

2 3.8 0.8 1.3 0.2
3 3.2 0.4 2.3 0.3
4 2.7 0.5 1.7 0.3
4 2.45 0.3 0.9 0.2
5 2.7 0.5 1.1 0.1
6 4.29 0.10 1.60 0.03
2 4.69 0.11 1.98 0.04

16* 56
9* 17*

9 21
43(100 K) 35(100 K)

18*(600 K) 73(600 K)
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Fig. 2. Integrated pair distribution functions: (a) vacancy–
vacancy, (b) vacancy–interstitial, (c) interstitial–interstitial. The
cascade energy is 20 keV. The results are shown for LVP and
MLD using initial boxes at 100 K and 600 K, DMK (SP) at
600 K and BCA at 600 K. The pdf are compared with the pdf in
random point defect distributions to illustrate the occurrence of
long distance correlations.
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interstitial populations tend to be physically sepa-
rated. (According to the cascade picture in [78],
radial point defect distribution functions show
vacancies dominantly in the core of cascades and
interstitials at the periphery [24].) Therefore, small
vacancy–interstitial separations are infrequent. The
interaction between point defects may be appreci-
ated by comparing MD and BCA results; the latter
are only influenced by short-range repulsion
between atoms during the ballistic phase. Compar-
ing LVP or MLD results obtained with 100 K and
600 K initial temperatures shows this interaction
to be thermally stimulated. The closest aggregation
is found for interstitial–interstitial pairs, consis-
tently with the 2nn clustering. Interstitials form no
clusters in the BCA cascades. However, by compar-
ing with the pdf for random interstitials distribu-
tions, the BCA interstitials are shown to be closer
to each other, which is evidence for aggregation sub-
sequent to ballistic interactions. The strength of
aggregation is sensitive to the potential, although
no systematic trend shows up.

Hence, like clustering (2nn–4nn), the longer-
range correlation also appears to result from several
processes that are both potential- and temperature-
dependent and take place during both the ballistic
and the cooling phases of the cascades.

6. Long-term evolution

In this section, we address the question of the
possible influence of the differences pointed out in
the previous paragraphs on the long-term evolution
of the damage. As described above, the cascades
used as input were obtained either with the same
code, the same box size and different potentials or
different codes, different box sizes and different
potentials.

The cascades were periodically injected in the
simulation box in order to model a rate of damage
production of 10�6 dpa/s NRT, and the simulation
was stopped as soon as a dose of 0.1 dpa NRT
was reached. Given the limited OKMC box size
(cubic with edges of 200a0), injecting one cascade
significantly modifies the overall defect cluster pop-
ulations. Therefore, rather than using the values
obtained at the end of the cascade that brought
the dose to 0.1 dpa, the populations of vacancy
and interstitial clusters averaged over the last 0.01
injected dpa are here considered as representative
of long-term evolution. They were analyzed and
an example of results is given in Table 7. Errors
associated with the sampling of number densities
over the last 0.01 dpa are typically less than 1%.
The OKMC simulations were performed using the
three interstitial mobility parameters sets. The



Table 7
Number densities of vacancies in clusters at the end of long-term evolution (after 0.1 dpa damage production)

RND BCA ABC CWP WOL AMS LVP MLD dMD

V SET I 11.1 23.88 48.21 51.22 86.41 77.89 72.9 106.7 75
SET II 19.54 32.93 29.98 32.46 50.91 46.41 44.11 25.85 65
SET III 129.8 328.0 302.5 417.1 536.6 585.3 443.5 309.3 64

I SET I 0.42 0.35 0.26 0.29 0.26 0.28 0.28 0.22 27
SET II 5.94 10.38 6.40 6.91 8.36 8.50 7.56 8.06 28
SET III 129.7 326.2 303.7 416.8 534.9 583.1 443.1 309.4 63

Units are 1018/cm�3. The data are given when 20 keV cascades are used as input. The initial MD temperature is 100 K. Results are given
for vacancies (V) in the first three rows, then for interstitials (I). d-Values are given in the last column, only accounting for OKMC results
using MD cascades as input.
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cascades injected are all selected in the categories
discussed in the previous section and the results
are displayed category by category.

Results obtained with random point defect distri-
butions are all outside the range of the others. This
shows the importance of the role of the internal
structure of the cascades on the long-term evolu-
tion. However, the features of the internal cascade
structure that drives the long-term evolution have
not yet been identified. For instance, the percentage
of clustered vacancies in BCA cascades is greater
than in MD predictions (see Table 5). However,
Table 7 shows that the number densities of clustered
vacancies obtained in the long term with BCA cas-
cades is lower than all MD results with OKMC
parameters set I and intermediate with sets II and
III. The internal cascade structure is a consequence
of both the ballistic and the cooling phases, which
cannot be differentiated after long-term evolution.
More generally, it is possible to classify OKMC
results obtained with each set of OKMC parameters
according to number density. For instance, with
parameter set II, the ranking of number densities
of clustered vacancies is, in decreasing order:
WOL–AMS–LVP–BCA–CWP–ABC–MLD–RND.
The ranking of SIA cluster number densities with
sets II and III is similar. This indicates that the
ranking of cluster populations in the long term does
not depend much on the OKMC parameterization
over a range of SIA mobility parameters even
though the number densities differ by more than 1
order of magnitude.

The displacement cascades used as input can be
ranked in the same way on the basis of percentages
of vacancies in clusters. In decreasing order, one
obtains: BCA–AMS–WOL–LVP–CWP–MLD–
ABC–RND. Using the percentages of clustered SIAs
in the same way gives: MLD–WOL–AMS–LVP–
ABC–CWP–BCA–RND. Other than the invariably
low ranking of RND, no clear correlation between
one of these two latter sequences and the corre-
sponding ones in the long term is found. The
percentages of clustered point defects in cascades
are thus not sufficient to explain point defect cluster
populations in the long term. If sets of cascades are
ranked by order of decreasing vacancy volumes,
one obtains MLD–CWP–ABC–BCA–WOL–LVP–
AMS, and by ranking interstitial volumes, MLD–
CWP–WOL–AMS–ABC–LVP–BCA. Again, these
sequences display no obvious correlation with the
ranking of clustered number densities found in the
long term.

It is possible to characterize the variability
between cluster populations in the long term in the
same way as was done for cascades in the previous
section, using d-values. Minimal and maximal num-
ber densities of point defects in clusters can be
derived from Table 7.

The results are shown in Table 7 for the three
mobility parameter sets employed in the OKMC.
As far as vacancies are concerned, no large differ-
ence in the d-values is found. This is consistent with
the fact that the mobility parameters for vacancies
and vacancy clusters are the same in the three
parameter sets. The value dV � 68% is somewhat
smaller than the values for the clustered fraction
in displacement cascades (95% in Table 3), though
of the same order. The variability in SIA clustering
is highest with the lowest mobility model. With the
intermediate mobility parameterization (set II), the
d-value of clustered interstitial number densities is
a little smaller than the d-value of the clustered
interstitials in the displacement cascades (55% in
Table 3). It is notable that, despite the order of mag-
nitude difference between number densities obtained
with sets I and II, the variabilities obtained are the
same. It is only when large clusters are immobile
(set III) – and so cannot be absorbed at grain



Table 8
Same as Table 7, using cascades generated in boxes with different initial temperatures

BCA 600 K BCA 100 K LVP 600 K LVP 100 K MLD 600 K MLD 100 K DMK 600 K

V SET I 188.0 238.8 917.6 729.0 130.0 106.7 210.6
SET II 282.7 329.3 65.31 44.11 59.11 35.85 19.32
SET III 246.5 328.0 539.0 443.5 486.0 309.3 185.8

I SET I 0.371 0.352 0.180 0.278 0.188 0.219 0.341
SET II 9.265 10.38 5.716 7.561 6.734 8.062 6.008
SET III 245.0 326.2 538.7 443.1 488.1 309.4 186.8
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boundaries – that the variability is significantly
enhanced.

The effect of the initial cascade box temperature
at the end of a long-term evolution can be seen in
Table 8.

The same temperature of 340 K is used in the
OKMC so that differences in the results are only
the consequence of differences in the initial displace-
ment cascade structures induced by the initial box
temperature. With all sets of OKMC parameters,
the results obtained with MD cascades predict an
increase of the number density of vacancies in clus-
ters with temperature while the opposite is predicted
with BCA cascades. This is another indication that,
qualitatively, populations of vacancies in clusters
are not affected by the parameterization of the
SIA cluster mobility. The result also shows that,
while LVP and MLD data yield opposite behavior
of clustered vacancy fractions with temperature in
displacement cascades (Table 5), the same trend is
found in the long term, contrary to the BCA sets.
This illustrates the lack of obvious relationship
between the clustering properties of vacancies in
the short and long term.

As far as interstitial clustering is concerned, the
consequences of temperature predicted by LVP
and MLD correlate as well. Number densities
decrease with increasing cascade box temperature,
except with the lowest mobility parameter set where
the opposite is found. Using BCA cascades, a trend
of decrease is predicted with increasing temperature
and all mobility sets. Again, no obvious relationship
shows up in the temperature dependence of clus-
tered interstitial fractions at the end of displacement
cascades.

7. Synthesis

The damage created in displacement cascades
calculated independently by different groups of
researchers using different models has been com-
pared and characterized statistically on the basis
of several parameters. Differences emerged and were
quantified. The objective was to address the possible
consequences of these differences on long-term clus-
ter growth.

The largest difference in models used to generate
cascades lays between the group of full MD simula-
tions and calculations computed in the BCA. By
ignoring collective interactions, the BCA only mod-
els the ballistic phase of cascades which lasts for no
more than a fraction of a picosecond, while typical
evolution times used in MD simulations are well
beyond 10 ps. In the BCA, it was necessary to assign
a value to the parameter defining the vacancy–inter-
stitial recombination threshold distance, regardless
of the recombination mechanisms, in order to
account in an approximated way for the cascade
relaxation phase. The main consequence is a severe
underestimation of the clustered SIA fraction and a
less severe overestimation of the clustered vacancy
fraction. Surprisingly, this difference has no dra-
matic consequence on the number density of clus-
tered interstitials in the long term.

A second difference concerns MD cascades and
the different interatomic potentials used in the sim-
ulations. Using a single code (DMK) and simula-
tion strategy, it was possible to determine the
consequences of different potentials on displacement
cascade characteristics and the long-term damage
evolution. Differences in the vacancy and the SIA
clustered fractions were significant (95% and 55%
respectively). However, in the long term, no correla-
tion could be established between these fractions
and the number densities of clustered vacancies
and SIAs.

A third difference between the primary damage
models is the temperature of the system in which cas-
cades are generated. Except in the BCA, constant
temperature was not imposed on the simulation
boxes. This results in an increase in box temperature
at the end of the cascades, which is box-size
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dependent but not significantly dependent on the ini-
tial temperature. Therefore, initial temperature
effects for a given cascade energy were measured for
boxes of the same size and thus at constant bias. In
all models, increasing the temperature has the conse-
quence of decreasing the number of Frenkel pairs,
suggesting the effect to be ballistic. Changes in point
defect clustered fractions are more significant.
Increasing the temperature enhances SIA clustering.
Results of vacancy clustering are not conclusive. As
far as temperature is concerned, and similar to
changes in potential, no clear correlation was found
between point defect clustering in displacement cas-
cades and the number densities in the long term.

These results suggest that point defect clustered
fractions in cascades are not crucial parameters
for long-term cluster growth, raising the possibility
that the internal structure of cascades does not have
a significant impact on the ultimate cluster evolu-
tion. The fact that no correlation was found
between the spatial extent of cascades and the
long-term evolution lends support to this specula-
tion. However, this view is countered by the com-
parison of cluster populations obtained at 0.1 dpa
when displacement cascades and when random
(and hence statistically structure-less) point defect
distributions with similar spatial extents. The com-
parison of pair distance distributions demonstrated
spatial correlations in cascades at longer distances
than those involved in point defect clusters, but
their possible relation to the long-term cluster
growth has not yet been examined.

A fourth difference between groups of cascades
analyzed in this work is the computational strategy
used in the MD codes for calculating them. This
encompasses the management of time steps, integra-
tion schemes, boundary conditions and the total
elapsed time. All these aspects may have an influ-
ence on the simulation results. To measure this
influence would require systematic comparative sim-
ulations that are beyond the scope of this report.

Three different published sets of OKMC param-
eters have been used to investigate long-term evolu-
tion, and they result in orders of magnitude
differences in number densities once the irradiation
dose reaches 0.1 dpa. However, different cascade
models do not induce differences of more than a fac-
tor of 2 in the long-term total number densities, sug-
gesting that the results are more sensitive to the
OKMC parameters. However, this factor of 2 may
increase if the cluster populations are examined in
deeper detail that was done here. For instance, dif-
ferences in the predicted number densities of large
clusters may be much larger than the differences in
integral parameters such as the total number of
point defects in clusters. Large clusters are particu-
larly relevant to radiation-induced hardening and
this points to the importance of carrying out more
detailed studies of the possible correlation between
the internal structure of displacement cascades and
the evolution of the point defect cluster size distri-
butions at higher doses.
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